Drug Delivery

Epinephrine Nasal Spray in Development for Treatment of Anaphylaxis Shows Promise as Potential Alternative to Intramuscular Injection

INSYS Therapeutics, Inc., a leader in the development, manufacture and commercialization of pharmaceutical cannabinoids and spray technology, announced today that its investigational epinephrine nasal spray showed promise in an early clinical trial as a potential needle-free, non-invasive and easy-to-use alternative to intramuscular injection for the treatment of anaphylaxis.

Axovant Licenses Investigational Gene Therapy for Parkinson’s Disease From Oxford BioMedica; Announces Key Leadership Team Addition

Axovant Sciences recently announced that it has licensed the exclusive worldwide rights to develop and commercialize OXB-102, now AXO-Lenti-PD, from Oxford BioMedica. AXO-Lenti-PD is an investigational gene therapy for Parkinson’s disease that delivers three genes encoding a critical set of enzymes required for dopamine synthesis in the brain.

Amunix Announces Report by Bioverativ on Unprecedented Half-Life Obtained in Patients Treated With Novel, Long-Acting FVIII Utilizing XTEN Technology

Amunix Operating Inc. recently reported that Bioverativ (a Sanofi company) has announced preliminary Phase 1/2a safety and pharmacokinetic clinical data for BIVV001 (rFVIIIFc-VWF-XTEN), a novel and investigational factor VIII therapy for people with hemophilia A that incorporates Amunix’s XTEN technology to improve circulatory half-life.

Nabriva Therapeutics Announces Positive Topline Results From Pivotal Phase 3 Clinical Trial of Oral Lefamulin

Nabriva Therapeutics plc recently announced positive topline results from its Lefamulin Evaluation Against Pneumonia (LEAP 2) clinical trial, the second of two global, pivotal Phase 3 clinical trials of lefamulin. LEAP 2 evaluated the safety and efficacy of 5 days of oral lefamulin compared to 7 days of oral moxifloxacin in adult patients with moderate community-acquired bacterial pneumonia (CABP).

Bellerophon Reaches Agreement With FDA on Study Design of Phase 2b Trial

Bellerophon Therapeutics, Inc. recently announced that, following the receipt of minutes from a recent meeting with the US FDA, the company has reached agreement with the FDA on all key aspects of its planned Phase 2b study of INOpulse for the treatment of Pulmonary Hypertension Associated with Chronic Obstructive Pulmonary Disease (PH-COPD).

Haselmeier & Common Sensing Enter Connected Injectable Medicine Collaboration

Haselmeier and Common Sensing recently announced a partnership agreement to develop smart connected monitoring and support solutions for users of injectable medicines. Worldwide, over 16 billion injections of medicine are administered every year. Smart connected monitoring solutions for users of injectables is aimed helping them to properly administer those medicines to improve efficacy and quality of therapies.

PEPTIDE DELIVERY - The Endometriosis Enigma – Why Can't There Be a Pill for That?

Joel Tune, MBA, says for those peptide therapeutics that meet the necessary criteria, advances in formulation technologies coupled with favorable market dynamics will continue to drive interest across the entire prescription drug spectrum for safe and effective orally administered peptide therapeutics.

What are Drug Delivery Systems?

Drug delivery systems are engineered technologies for the targeted delivery and/or controlled release of therapeutic agents. The practice of drug delivery has changed significantly in the past few decades and even greater changes are anticipated in the near future. Drug delivery includes but is not limited to oral delivery, gene/cell delivery, topical/transdermal delivery, inhalation deliver, parenteral delivery, respiratory delivery, capsules, particle design technology, buccal delivery, etc.

The Evolution of Drug Delivery Systems

Drug delivery systems have greatly evolved over the past 6 decades. In the past 12 years specifically, there have been huge advancements in drug delivery technology. For instance, advanced medication delivery systems, such as transdermal patches, are able to deliver a drug more selectively to a specific site, which frequently leads to easier, more accurate, and less dosing overall. Devices such as these can also lead to a drug absorption that is more consistent with the site and mechanism of action. There are other drug delivery systems used in both medical and homecare settings that were developed because of various patient needs and researchers continue to develop new methods.

Drug Delivery System Market Size

The pharmaceutical drug delivery market size is studied on the basis of route of administration, application, and region to provide a detailed assessment of the market. On the basis of route of administration, it is segmented into oral delivery, pulmonary delivery, injectable delivery, nasal delivery, ocular delivery, topical delivery, and others.

The estimated global market size of drug delivery products was $1.4 trillion in 2020. Unfortunately, 40% of marketed drugs and 90% of pipeline drugs (mostly small molecules) are poorly soluble in water, which makes parenteral, topical, and oral de­livery difficult or impossible. In relation, poor solubility often leads to low drug efficacy. Add in the fact that many other hurdles exist in the form of drug loading, stability, controlled release, toxicity, and absorption – it’s not hard to understand the difficulties in bringing new drug products to market. Additionally, biopharma­ceuticals (proteins, peptides, nucleic acids, etc) and combination drug products possess many of these same problematic obstacles that affect efficacy. These challenges, coupled with the complexity and diversity of new pharmaceuticals, have fueled the develop­ment of a novel drug delivery platforms that overcome a great many bioavailability and delivery obsta­cles. By leveraging these platforms, pharmaceutical and biopharmaceutical companies can improve dosing accuracy, efficacy, and reproducibility in their drug discovery and drug delivery research.

Drug Delivery System Demand

The demand for pharmaceutical products worldwide is only going to increase in the coming years, as old and emerging dis­eases continue to threaten the well-being of people globally. Drug discovery efforts are expected to intensify, generating a large va­riety of active compounds with vastly different structures and properties. However, it is well known that despite tremendous out­put of the drug discovery process, the success rate of a candidate compound becoming an approved drug product is extremely low. The majority of candidate compounds are discarded due to var­ious hurdles in formulation and preclinical testing (such as issues with solubility, stability, manufacturing, storage, and bioavailabil­ity) before even entering into clinical studies. Therefore, advances in formulation and drug delivery, especially the development of new and versatile biomaterial platforms as effective excipients, may salvage many “difficult,” otherwise triaged, drug com­pounds, and significantly enhance their chance of becoming vi­able products. Furthermore, breakthroughs in biomaterial platform technologies will also facilitate life cycle management of existing APIs through reformulation, repurposing of existing APIs for new indications, and development of combination prod­ucts consisting of multiple APIs.