Drug Delivery

DRUG DELIVERY - Advancements in Transdermal Delivery Systems: A Focus on Invisicare® Technology for Obesity Treatment

James A. Roszell, PhD, and Doreen McMorran demonstrate how this technology has demonstrated potential in the transdermal administration of glucagon-like peptide-1 (GLP-1) agonists and cannabinoid receptor type 1 (CB-1) antagonists, primarily targeting obesity management and other conditions requiring glucose regulation.

TOPICAL DELIVERY - Direct Effects™ Perampanel (FYCOMPA®): First Topical Anticonvulsant to Treat Seizures, Headache & Other Symptoms in Epilepsy

Ronald Aung-Din, MD, Sasha Feygin, and Daniele La Rosa say Direct Effects topical perampanel is effective in treating headache and other neurological symptoms commonly encountered in patients with seizures and other conditions in which neuronal instability and hyper-excitability exist.

SMI TECHNOLOGY - How Soft Mist Inhalers Support Improved Biopharma Drug Delivery

Nicolas Buchmann, PhD, explores the opportunities and challenges of developing biologic formulations for delivery via SMIs and discusses the importance and impact of partnerships between inhalation device development experts when it comes to facilitating the innovation needed to expand the suitability of SMIs to a wider range of biopharma formulations.

PRECLINICAL/CLINICAL STUDIES - Preclinical Toxicology vs Clinical: Key Considerations in Using Lipid-Based Formulations

Anette Müllertz, PhD, Grace Furman, PhD, and Lisa Caralli say developers should first understand the developability challenges for their molecule, then a toolkit of enabling technologies can be identified to overcome those factors and individually leveraged to create fit for purpose formulations for use in preclinical and clinical studies.

What are Drug Delivery Systems?

Drug delivery systems are engineered technologies for the targeted delivery and/or controlled release of therapeutic agents. The practice of drug delivery has changed significantly in the past few decades and even greater changes are anticipated in the near future. Drug delivery includes but is not limited to oral delivery, gene/cell delivery, topical/transdermal delivery, inhalation deliver, parenteral delivery, respiratory delivery, capsules, particle design technology, buccal delivery, etc.

The Evolution of Drug Delivery Systems

Drug delivery systems have greatly evolved over the past 6 decades. In the past 12 years specifically, there have been huge advancements in drug delivery technology. For instance, advanced medication delivery systems, such as transdermal patches, are able to deliver a drug more selectively to a specific site, which frequently leads to easier, more accurate, and less dosing overall. Devices such as these can also lead to a drug absorption that is more consistent with the site and mechanism of action. There are other drug delivery systems used in both medical and homecare settings that were developed because of various patient needs and researchers continue to develop new methods.

Drug Delivery System Market Size

The pharmaceutical drug delivery market size is studied on the basis of route of administration, application, and region to provide a detailed assessment of the market. On the basis of route of administration, it is segmented into oral delivery, pulmonary delivery, injectable delivery, nasal delivery, ocular delivery, topical delivery, and others.

The estimated global market size of drug delivery products was $1.4 trillion in 2020. Unfortunately, 40% of marketed drugs and 90% of pipeline drugs (mostly small molecules) are poorly soluble in water, which makes parenteral, topical, and oral de­livery difficult or impossible. In relation, poor solubility often leads to low drug efficacy. Add in the fact that many other hurdles exist in the form of drug loading, stability, controlled release, toxicity, and absorption – it’s not hard to understand the difficulties in bringing new drug products to market. Additionally, biopharma­ceuticals (proteins, peptides, nucleic acids, etc) and combination drug products possess many of these same problematic obstacles that affect efficacy. These challenges, coupled with the complexity and diversity of new pharmaceuticals, have fueled the develop­ment of a novel drug delivery platforms that overcome a great many bioavailability and delivery obsta­cles. By leveraging these platforms, pharmaceutical and biopharmaceutical companies can improve dosing accuracy, efficacy, and reproducibility in their drug discovery and drug delivery research.

Drug Delivery System Demand

The demand for pharmaceutical products worldwide is only going to increase in the coming years, as old and emerging dis­eases continue to threaten the well-being of people globally. Drug discovery efforts are expected to intensify, generating a large va­riety of active compounds with vastly different structures and properties. However, it is well known that despite tremendous out­put of the drug discovery process, the success rate of a candidate compound becoming an approved drug product is extremely low. The majority of candidate compounds are discarded due to var­ious hurdles in formulation and preclinical testing (such as issues with solubility, stability, manufacturing, storage, and bioavailabil­ity) before even entering into clinical studies. Therefore, advances in formulation and drug delivery, especially the development of new and versatile biomaterial platforms as effective excipients, may salvage many “difficult,” otherwise triaged, drug com­pounds, and significantly enhance their chance of becoming vi­able products. Furthermore, breakthroughs in biomaterial platform technologies will also facilitate life cycle management of existing APIs through reformulation, repurposing of existing APIs for new indications, and development of combination prod­ucts consisting of multiple APIs.