Bio Platforms

Oregon Therapeutics & Lantern Pharma Launch Strategic AI Collaboration to Optimize Development of First-In-Class Drug Candidate XCE853 – A Potent Inhibitor of Cancer Metabolism

Lantern Pharma Inc. recently announced a strategic AI-driven collaboration with French biotechnology company, Oregon Therapeutics, to optimize the development of its first-in-class protein disulfide isomerase (PDI) inhibitor drug…

EXECUTIVE INTERVIEW - Adare Pharma Solutions: Expanding Capabilities to Exceed Customer Expectations

Tom Sellig, CEO of Adare Pharma Solutions, discusses how he has realized various achievements and about the company’s focus on addressing special needs in the market, its global expansion, and where he expects to take the company in the future.

DRUG & DEVICE DEVELOPMENT - Integration of siRNA, Nanoparticles & Capsule Endoscopy for Treatment of Inflammatory Bowel Disease

Nila Murali, Leia Jiang, and Ravali Bhavaraju highlight a promising technology that can change the way IBD is treated. Current imaging technology can successfully identify inflammation, and current treatments can address active inflammation and manage symptoms.

CELL & GENE THERAPY - It’s Time to Build Infrastructure to Handle the Coming Surge

Fran Gregory says the complexities and innovations associated with the production of cell and gene therapies also necessitates a shift in infrastructure, which will affect manufacturers, distributors, and providers. From development, manufacturing, storage, and delivery to patients; each step in the process requires forging a new path.

What are Bio Platforms?

Platforms (or asset-independent technologies to capture all kinds of capabilities that can be leveraged across many different drug candidate assets rather than just discovery tools that the term ‘platform’ immediately brings to mind) are ubiquitous in modern pharma. They are the product of an arms race, to secure access to the best capabilities in key areas.

Platform technologies are considered a valuable tool to improve efficiency and quality in drug product development. The basic idea is that a platform, in combination with a risk-based approach, is the most systematic method to leverage prior knowledge for a given new molecule. Furthermore, such a platform enables a continuous improvement by adding data for every new molecule developed by this approach, increasing the robustness of the platform.

But it has often been said that access to the latest technological platforms to aid efficient drug discovery and development is limited to Big Pharma, which can more easily justify the costs of creating and operating these platforms.

Benefits of Bio Platforms

Platform technologies have the ability to radically improve upon current products and generate completely novel products. In this sense, they open up new arenas for drug discovery and development, potentially increasing the number of therapeutic options for patients. Once a single compound or therapeutic has been generated and demonstrates a clinical benefit in patients, it is more likely this platform technology can successfully be applied to other therapeutic areas, derisking future compounds/products.
Complex drugs by their very nature are challenging and costly to manufacture. This, in turn, translates into higher costs for patients and other payers. In order to provide safe and effective therapies at a reasonable price, it is necessary for the industry to develop manufacturing technologies that reduce costs and provide a consistent product. While the initial investment may be larger, manufacturing costs will be lower over time as the manufacturing process is solidified.

Scale and Investment of Bio Platforms

Despite the initial upfront costs, platform technologies inevitably provide pragmatic solutions to production challenges, while yielding safer and more effective therapeutic products. It has often been said that one of the key features that distinguishes “Big Pharma” from biotech is access to the latest technological platforms to aid efficient drug discovery and development.

These platforms range from vast chemical libraries, ultra-high throughput screening and huge genetic databases in discovery, to predictive toxicology platforms, cutting-edge ‘omics’ and even deep-seated knowledge of particular therapeutic areas in development. All these platforms have two things in common: They can be used on any (or many) development candidate assets, and they cost huge sums to establish in the first place, and in a few cases each time they are used as well. Hence their restriction to the largest pharmaceutical companies (and a few of the so-called “big biotechs” that are, in many ways, indistinguishable from the old-guard pharma).

Only when you have hundreds of active projects can you justify the cost of creating and operating these platforms. Or so the mantra goes. It is access to these platforms that keeps the big companies ahead in the race to discover and develop the best medicines (or at least counterbalance the disadvantages of being large and slow-moving, depending on your point of view). But is that just an assertion? How much evidence is there to support the proposition that the efficiency gains due to these platforms outstrips the cost of creating and maintaining them?

Keeping these technologies “cutting edge” has become so expensive that increasingly we hear pharma companies talking of “pre-competitive” approaches to develop the next generation. A group of companies might develop a platform capability they then share. The principle goal of such initiatives is to access even grander and more expensive tools than individual companies could afford, rather than to dramatically cut costs (although sharing platforms rather than developing the same thing in parallel in each silo should at least keep a lid on rising costs).